Archaea and Bacteria
Welcome to the microscopic world of the Prokaryotes.
The smallest and most diverse group of organisms living on this planet.
Prokaryotes are the original inhabitants of this planet, the first successful today's would have looked very like some of today's Archaea. Both Archaea and Bacteria evolved somewhere between 3 or 4 billion years ago as far as we are able to tell from the fossil record. This means they have been around twice as long as the Protozoans and more than 3 times as long as animals.
Prokaryotes are the toughest of the tough when it come to living things. They hold all the records for living in the coldest, hottest, most acidic and most highly pressurized environments. They live in incredible places such as miles beneath the earth in bare rock, under glaciers, floating around in clouds and miles down on the sea floor at temperatures greater than
Prokaryotes make up most of what is studies by microbiologists, the rest being some single celled fungi and algae. Microbiology is a very important field of research these days. Contributing greatly to our studies of medicine, bioengineering, genetics and evolution.
Prokaryotes are single celled organisms that do not have a nucleus, mitochondria or any other membrane bound organelles. In other words neither their DNA nor any other of their sites of metabolic activity are collected together in a discrete membrane enclosed area. Instead everything is openly accessible within the cell some free floating some bound to the walls of the cell membrane, it is this which separates them from the Eukaryotes. Some bacteria have internal membranes, invaginations of the cell membrane as sites of metabolic activity, these membranes do not enclose a separate area of the cytoplasm. For more on Prokaryote vs. Eukaryote cells see Cells.html
Prokaryotes come in two sorts, Archaea and Bacteria. Both of these are a Kingdoms of life in their own rite. this is because they are as different, if not more different, from each other, as they are from protozoans, fungi, plants and us. At the bottom of this page is a table listing most of the major differences between Archaea, Bacteria and Eukaryotes.
NOTE:- Nitrogen is an essential component of all protein and DNA molecules. However gaseous nitrogen, N2, cannot be used by most organisms. So even though there is plenty of nitrogen in the atmosphere, often not much of it is available for living things to use to grow. To build new proteins, etc., most organisms make use of nitrogen that is already part of a larger molecule, i.e. a dead plant or animal or animal waste products. Gaseous nitrogen is free nitrogen. So far as we know only prokaryotes, human chemists and the occasional blast of lightening can split the two atoms of nitrogen in gaseous nitrogen and cause them to be combined with one or more carbon or oxygen atoms. When a nitrogen atom is included in a molecule comprising other elements it is referred to as 'fixed' and organisms which can take gaseous nitrogen and incorporate it into such molecules are called 'nitrogen-fixers'. Nitrogen fixing organisms are very important to the balance of life on earth, without them Eukaryotes (Animals, Fungi and Plants) would be able to live and grow. |
A Note on Measurement and its Terminology
All measurements made in the microscopic world are based on the metre, this is because the metre is the basic unit of all scientific measurements of length. If you are still thinking in imperial term (inches, feet and yards) a metre is about
The units of measurements for microscopic organisms are Micrometres, Nanometres and Ångstroms.
103 = a 1 with 3 '0's after it (i.e. 1000), 106 = a 1 with 6 '0's after it etc.
Metric Units of Measurement | ||
Unit of Measurement | Number in | Number in |
Centimetre | 102 | 2.5 |
Millimetre | 103 | 25 |
Micrometre | 106 | 25 000 |
Nanometre | 109 | 25 000 000 |
Ångstrom | 1010 | 250 000 000 |
For Those Who Would Like to Know More
To find out more you will have to visit the following pages:-
The Archaea The Bacteria Prokaryotes in the News.
Table of differences between Archaea, Bacteria and Eukaryotes | |||
Characteristic | Archaea | Bacteria | Eukaryotes |
Predominantly multicellular | No | No | Yes |
Cell contains a nucleus and other membrane bound organelles | No | No | Yes |
DNA occurs in a circular form* | Yes | Yes | No |
Ribosome size | 70s | 70s | 80s |
Membrane lipids ester-linked** | No | Yes | Yes |
Photosynthesis with chlorophyll | No | Yes | Yes |
Capable of growth at temperatures greater than | Yes | Yes | No |
Histone proteins present in cell | Yes | No | Yes |
Methionine used as tRNA Initiator*** | Yes | No | Yes |
Operons present in DNA | Yes | Yes | No |
Interon present in most genes | No | No | Yes |
Capping and poly-A tailing of mRNA | No | No | Yes |
Gas vesicles present | Yes | Yes | No |
Capable of Methanogenesis | Yes | No | No |
Sensitive to chloramphenicol, kanamycin and streptomycin | No | Yes | No |
Transcription factors required | No | Yes | Yes |
Capable of Nitrification | No | Yes | No |
Capable of Denitrification | Yes | Yes | No |
Capable of Nitrogen Fixation | Yes | Yes | No |
Capable of Chemolithotrophy | Yes | Yes | No |
* Eukaryote DNA is linear | |||
** Archaea membrane lipids are ether-linked | |||
*** Bacteria use Formylmethionine |
0 comments:
Post a Comment